Call for Abstract

7th International Conference and Exhibition on Bacteriology
&
Antibiotics, will be organized around the theme “Challenges and New Concepts in Bacteriology & Antibiotics Research

Mail us at:[email protected]

Bacteriology 2019 is comprised of keynote and speakers sessions on latest cutting edge research designed to offer comprehensive global discussions that address current issues in Bacteriology 2019

Submit your abstract to any of the mentioned tracks.

Register now for the conference by choosing an appropriate package suitable to you.

Microbiology is the study of all living organisms that are too small to be visible with the naked eye. This includes bacteria, archaea, viruses, fungi, prions, protozoa and algae, collectively known as 'microbes'. These microbes play key roles in nutrient cycling, biodegradation/biodeterioration, climate change, food spoilage, the cause and control of disease, and biotechnology. Microbes can be put to work in many ways: making life-saving drugs, the manufacture of biofuels, cleaning up pollution, and producing/processing food and drink.

A urinary tract infection (UTI) is a bacterial infection that alters the urinary system that produces, stores, and eliminates urine. The causative of the infection is a bacteria called Escherichia coli. Composition of urine is salts, fluids and waste produces, but does not usually have bacteria in it. Bacteria inflowing the bladder or kidney can multiply rapidly in the urine, causing a UTI (urinary tract infection). Cystitis is the most common type of UTI and mostoftenly referred to as a bladder infection. A kidney infection, also known as pyelonephritis is potentially more serious.

Infections of the bladder and/or urethra are known as lower urinary tract infections; if it occurs in the kidneys or ureters they are known as upper urinary tract infections. In general, urinary tract infections are simply and effectively treated with a short course of antibiotics. However, infection can cause uneasiness, to the patient suffering pain at the time of urination, a frequent desire to urinate, and cloudy urine. Women are more likely than men to have a UTI. This is because in women the urethra is nearer to the anus than it is in men, which makes it easier for bacteria to get from the anus to the urethra. In women the urethra is also much shorter than it is in men, making it easier for bacteria to contact the bladder. Antibiotics are used to treat UTIs. The majority cases of UTIs clear up after a few days of drug treatment, although more severe cases may require few weeks of treatment. Guidelines recommend using nitrofurantoin or trimethoprin-sulfamethoxazole as first-line antibiotic treatments for UTIs. Fluoroquinolones (such as ciprofloxacin) are now only recommended when other antibiotics are not appropriate.

Parasites are organisms that live off other organisms, or hosts, to survive. Some parasites don’t noticeably affect their hosts. Others grow, reproduce, or invade organ systems that make their hosts sick, resulting in a parasitic infection. Parasitic infections are a big problem in tropical and subtropical regions of the world. Malaria is one of the deadliest parasitic diseases. Some parasites like Toxoplasma gondii and Plasmodium spp. can cause disease directly, but other organisms can cause disease by the toxins that they produce.

Antibiotics, also called antibacterials or antimicrobials, is a group of medicines used in the treatment of infections caused by germs—bacteria and certain parasites—by inhibiting the growth of microorganisms or killing them. Since the discovery of the antibiotic penicillin in 1920, various antibiotic compounds have been widely used to treat several bacterial infections. Increasing incidence of chronic and infectious diseases across the globe and efficacy of antibiotics to treat a wide spectrum of bacterial infections have led to the rapid evolution of the global antibiotic market. Based on geography, the report segments the global antibiotic markets into North America, Europe, Asia Pacific, and Rest of the World (ROW). Currently, Asia Pacific accounts for the leading share in the global antibiotic market. The region is likely to present exciting growth opportunities along the forecast period, driven by the prevalence of various infectious diseases, favorable regulatory reforms, and significant demand for generic medicines. A large number of players have been actively focusing on new drug development and clinical trials. Prominent biotechnology companies are entering into strategic alliances, which has helped them make considerable investments in drug discovery. Pharmaceutical companies are actively developing analogues of existing antibiotic classes based on innovative approaches to fight bacterial infections. Key players operating in the global antibiotic market include Pfizer Inc., Astellas Pharma, Inc, Roche, Novartis AG, Bristol-Myers Squibb Co., Bayer HealthCare AG, Abbott Laboratories, MiddleBrook Pharmaceuticals, Takeda Pharmaceutical Company, Ltd., Daiichi Sankyo Company, Ltd., GlaxoSmithKline Plc, Eli Lilly and Co., and Kyorin Pharmaceutical Co., Ltd. The antibiotics market was valued at USD 39.8 billion in 2015 and is expected to witness a CAGR of 4.0% over the forecast period. Increasing efforts are being witnessed toward the development of advanced products. According to the data published by the Pew Charitable Trust, in March 2016, about 37 promising molecules were being investigated within the U.S. market. Majority of these, are in phase II clinical trials and are anticipated to hit the market between 2018 - 2020. Furthermore, supportive government legislations, such as the Generating Antibiotics Incentives Now (GAIN) Act are expected to expedite the approval process. GAIN Act has provisions which facilitate development of therapy against antibiotic resistant pathogens.

Bacterial pathogenesis is the process by which bacteria infect and cause disease in a host. Not all bacteria are pathogens and have the ability for pathogenesis (also known as virulence). Pathogenic bacteria utilise a number of mechanisms to cause disease in human hosts. Bacterial pathogens express a wide range of molecules that bind host cell targets to facilitate a variety of different host responses. The molecular strategies used by bacteria to interact with the host can be unique to specific pathogens or conserved across several different species. A key to fighting bacterial disease is the identification and characterisation of all these different strategies. The availability of complete genome sequences for several bacterial pathogens coupled with bioinformatics will lead to significant advances toward this goal. There are several bacterial pathogenic diseases. One among them is tuberculosis which is caused by Mycobacterium tuberculosis. It includes other pathogens of bacteria such as Streptococcus and Pseudomonas. These pathogens and form of bacteria causes many foodborne illnesses and infections such as tetanus, typhoid fever and diphtheria. Microbes express their pathogenicity by means of their virulence. The determinants of virulence of a pathogen are any of its genetic or biochemical or structural features that enable it to produce disease in a host. In bacterial host mediated pathogenesis, (e.g., tuberculosis), tissue damage results from the toxic mediators released by lymphoid cells rather than from bacterial toxins.

Antibiotics also called antibacterials, are a type of antimicrobial drug used in the treatment and prevention of bacterial infections.They may either kill or inhibit the growth of bacteria. A limited number of antibiotics also possess antiprotozoal activity. Antibiotics are not effective against viruses such as the common cold or influenza; drugs which inhibit viruses are termed antiviral drugs or antivirals rather than antibiotics. In 1926, Alexander Fleming discovered penicillin, a substance produced by fungi that appeared able to inhibit bacterial growth. Another antibiotic, for example, is tetracycline, a broad-spectrum agent effective against a wide variety of bacteria including Hemophilus influenzae, Streptococcus pneumoniae, Mycoplasma pneumoniae, Chlamydia psittaci, Chlamydia trachomatis, Neisseria gonorrhoea, and many others.

The term antibiotic is now generally used to include antimicrobial substances produced by chemical means as well as those produced by micro-organisms. They may be either bacteriostatic or bacteriocidal. A bacteriostatic antibiotic inhibits the growth and replication of bacteria thereby giving the body's natural defence mechanisms time to become effective in overcoming an infection. In the majority of cases, and particularly in patients whose natural resistance is lowered by disorders of the immune system, it is preferable to choose a bacteriocidal agent. The first bacteriocidal antibiotic was penicillin G. Knowledge of how the body handles a drug, in particular an understanding of absorption, distribution and excretion, helps to provide rational dose regimes which give therapeutic concentrations but keep adverse reactions to a minimum. The two important features of the structure of penicillin are the (3-lactam ring and the side-chain. Alterations in the side-chain give rise to differences in resistance to gastric acid and variation in antibacterial spectrum. In general, increasing the length of the side-chain increases resistance to gastric acid and increases the antibacterial spectrum.

Antibiotic resistance is the ability of bacteria to resist the effects of an antibiotic. Antibiotic resistance occurs when bacteria change in a way that reduces the effectiveness of drugs, chemicals, or other agents designed to cure or prevent infections. The bacteria survive and continue to multiply, causing more harm. Antibiotic resistance has been called one of the world’s most pressing public health problems. Antibiotic resistance can cause illnesses that were once easily treatable with antibiotics to become dangerous infections, prolonging suffering for children and adults. Antibiotic-resistant bacteria are often more difficult to kill and more expensive to treat. In some cases, the antibiotic-resistant infections can lead to serious disability or even death. Antibiotics are not effective against viral infections like the common cold, flu, most sore throats, bronchitis, and many sinus and ear infections. Widespread use of antibiotics for these illnesses is an example of how overuse of antibiotics can promote the spread of antibiotic resistance. Smart use of antibiotics is key to controlling the spread of resistance. Bacteria can become resistant to antibiotics through several ways. Some bacteria can “neutralize” an antibiotic by changing it in a way that makes it harmless. Others have learned how to pump an antibiotic back outside of the bacteria before it can do any harm. Some bacteria can change their outer structure so the antibiotic has no way to attach to the bacteria it is designed to kill. After being exposed to antibiotics, sometimes one of the bacteria can survive because it found a way to resist the antibiotic. If even one bacterium becomes resistant to antibiotics, it can then multiply and replace all the bacteria that were killed off. That means that exposure to antibiotics provides selective pressure making the surviving bacteria more likely to be resistant. Bacteria can also become resistant through mutation of their genetic material.

Bacterial vaginosis is an abnormal vaginal condition that is characterized by vaginal discharge and results from an overgrowth of atypical bacteria in the vagina. It is not a true bacterial infection but rather an imbalance of the bacteria that are normally present in the vagina. Usually treatment is with an antibiotic, such as clindamycin or metronidazole. BV is the most common vaginal infection in women of reproductive age. In the United States about 30% of women between the ages of 14 and 49 are affected. BV is linked to an imbalance of “good” and “harmful” bacteria that are normally found in a woman’s vagina. Bacterial vaginosis results from overgrowth of one of several bacteria naturally found in your vagina. Usually, "good" bacteria (lactobacilli) outnumber "bad" bacteria (anaerobes). But if there are too many anaerobic bacteria, they upset the natural balance of microorganisms in your vagina and cause bacterial vaginosis. BV is a polymicrobial clinical syndrome resulting from replacement of the normal hydrogen peroxide producing Lactobacillus sp. in the vagina with high concentrations of anaerobic bacteria (e.g., Prevotella sp. and Mobiluncus sp.), G. vaginalis, Ureaplasma, Mycoplasma, and numerous fastidious or uncultivated anaerobes. Some women experience transient vaginal microbial changes, whereas others experience them for longer intervals of time.

Listeria bacteria can contaminate fresh produce, like cantaloupes, as well as some processed foods, like cheeses. Symptoms of infection include fever, muscle aches, upset stomach, or diarrhea. Salmonella bacteria can taint any food, although there's a greater risk from animal products because of contact with animal feces. In chickens, it can infect eggs before the shell forms, so even clean, fresh eggs may harbor salmonella. E. coli lives in the intestines of cattle and can contaminate beef during the slaughtering process. Ground beef is especially risky, because the bacteria can spread when meat is ground up. Symptoms of E. coli infection include severe abdominal cramps, watery diarrhea, and vomiting. The illness typically develops several days after exposure and can be severe in vulnerable people. Clostridium perfringens is a type of bacteria that causes cramps and diarrhea lasting less than 24 hours. Stews, gravies, and other foods that are prepared in large quantities and kept warm for a long time before serving are a common source of C. perfringens infections. Vibrio vulnificus is a bacteria that lives in warm seawater and can contaminate shellfish, particularly oysters. V. vulnificus infection causes the same gastrointestinal symptoms as many other foodborne illnesses, but in people with weakened immune systems it can develop into a life-threatening blood infection. Salmonella is an extremely common type of bacteria. These rod-shaped organisms can be found in both cold-blooded and warm-blooded animals across the world. They are also one of the most common causes of sickness in human beings. Salmonella poisoning can infect people in one of two ways. It is most often spread from animals to people through the food supply. This is how the bacteria can cause the nauseating disease gastroenteritis.

Bacterial infections can cause a variety of conditions. Infections occur as bacteria enter the body or grow on the skin. Treatment for bacterial infection include taking medication. Common drug classes used to treat bacterial infections are penicillin antibiotics, quinolone antibiotics, macrolide antibiotics, cephalosporin antibiotics, tetracycline antibiotics, lincosamide antibiotics, nitroimidazole antibiotics, sulfa antibiotics, polypeptide antibiotics, oxazolidinone antibiotics, penem antibiotics, glycopeptide antibiotics, and monobactam antibiotics. Sepsis is the body’s often deadly response to infection. Sepsis kills and disables millions and requires early suspicion and treatment for survival. Sepsis can result from an infection anywhere in the body, such as pneumonia, influenza, or urinary tract infections. Bacterial infections are the most common cause of sepsis. Worldwide, one-third of people who develop sepsis die. Many who do survive are left with life-changing effects, such as post-traumatic stress disorder (PTSD), chronic pain and fatigue, organ dysfunction (organs don’t work properly) and/or amputations. Bacteria must enter your body for them to cause an infection. So you can get a bacterial infection through an opening in your skin, such as a cut, a bug bite, or a surgical wound. Bacteria may also enter your body through your airway and cause infections like bacterial pneumonia. Other types of bacterial infections include urinary tract infections (including bladder and kidney infections) and dental abscesses, as well as infections caused by MRSA, Group B Streptococcus, and C. Difficile.

Cancer patients develop neutropenia, a decrease in the subset of leucocytes responsible for protection against bacteria, as a result of chemotherapy or cancer. Neutropenia predisposes the patients to severe bacterial infections. Standard antibiotic regimens for cancer patients with neutropenia and fever are directed at most of the bacteria that can cause infections. However, a subset of resistant bacteria belonging to the gram-positive group (Staphylococcus aureus and Streptococci) remain untreated unless specific antibiotics are added to the treatment. For patients receiving chemotherapy, there is an increased risk of infection due to a low white blood cell count (neutropenia) caused by a toxic effect of chemotherapy on the bone marrow. Antibiotic prophylaxis significantly decreased the risk of death when compared to no intervention. Antibiotic prophylaxis also decreased the risk of death from infection and the risk of development of fever.

Laboratory-produced drugs used to target and destroy cancerous cells. Therapeutic anticancer antibiotics have become an accepted treatment for certain types of cancer. These drugs bind specifically to primary and metastatic cancer cells to block cell growth, while limiting effects on surrounding healthy cells. Also called antitumor antibiotics, anticancer antibiotics can also be used to treat or prevent infections brought on by cancer treatments. Any anticancer drug that affects DNA synthesis and replication by inserting into DNA or by donating electrons that result in the production of highly reactive oxygen compounds (superoxide) that cause breakage of DNA strands. These antibiotics are administered almost exclusively by intravenous infusion for the treatment of lymphoma and leukemia, nephroblastoma (Wilm tumour), sarcoma, and cancers of the testicle, the breast, the thyroid, the lung, and the stomach.

Ayurvedic treatments have a good reputation because of the fewer side effects caused by them and also these are naturally available products and so it is not synthetically made which leads to no carcinogens in the ayurvedic products. Herbal remedies for bacterial infections comprise Aloe Vera, Neem, Barberry, Goldenseal, Garlic, Cinnamon, Thyme, Cloves, Cayenne Pepper, Horseradish, Cumin, Oregano, Basil, Rosemary, Lavender, Tea Tree, Nutmeg and Peppermint. Most of these herbs destroy the disease causing bacteria. Some herbs such as Echinacea combine antibacterial properties with immunostimulatory action. Herbal remedies which can cure bacterial infections with ease and efficacy. When antibiotics are used for a long time, it makes the disease causing microorganisms develop a defence against the action of these medicines, thereby, becoming totally unresponsive to medicines. This issue is becoming a huge concern for entire humanity that is threatening the validity and effectiveness of modern medicines. Ayurveda understands the delicate balance of nature and deals with diseases by taking a natural and balanced approach. Immunomodulatory rasayans in Ayurvedic medicines strengthen the body’s innate defence mechanism to fight diseases. As a result, disease causing microbes do not become drug resistant. Ayurvedic treatment is also safe for the gut microbiota and does not damage it. In addition to these obvious benefits, Ayurvedic treatment also acts on the root-cause rather than on symptoms. The ayurvedic products from the plants are rich in a wide variety of secondary metabolites which include flavonoids, tannins, alkaloids. These compounds are found to antimicrobial in nature. In Ayurveda, many herbal plants are used in treating bacterial infection and infectious diseases. Solvents extracts from certain herbal include Ajmodadi churna, Mahasudarshan churna, Triphala churna is found to have antibacterial properties against some bacterial pathogens include Staphylococcus aureus, Enterobacter aerogens, etc.

The discovery of penicillin followed by streptomycin, tetracycline, cephalosporins and other natural, semi-synthetic and synthetic antimicrobials completely revolutionized medicine by reducing human morbidity and mortality from most of the common infections. The efficiency of antimicrobial treatment is determined by both pharmacokinetics and pharmacodynamics. In spite of their selective toxicity, antibiotics still cause severe, life-threatening adverse reactions in host body mostly due to defective drug metabolism or excessive dosing regimen. Toxicity of antibiotics as well as antibiotic resistance mechanisms, resistome analyses and search for novel antibiotic resistance determinants with special emphasis given to the-state-of-the-art regarding multidrug efflux pumps and their additional physiological functions in stress adaptation and virulence of bacteria.

Bacterial pathogens are a major cause of infectious diseases. It is important to be able to identify them in patients in order to provide an effective treatment. The subject explores topics such as identification and quantitative methods, possible automation of the techniques or efficiency of available treatments while providing a clinical knowledge. The studies cover notably staphylococci, streptococci, corynebacteria, mycobacteria, neisseria, enteric bacteria, pasteurellae, pseudomonads and spirochaetes and their mechanisms of action in the context of the disease they cause. Available treatments are explored through the study of the different families of antibiotics, along with the possible resistance mechanisms they can develop and how they can be identified. The main aim of clinical bacteriology is to diagnose the disease by using specimens. These specimens may be urine, feces, body fluids, tissue etc. Manual testing is done by using this specimen to find out the infectious disease. The infectious diseases were mainly caused by the bacteria like s.pneumonia, h.pylori, t.palladium, l.borreliosis. Clinical bacteriology concerns of detection, prevention of infectious disease and to study the characteristic of the pathogen.

Bacteria is made up of three domains of life .Unlike eukaryotes, bacteria has nucleoids instead of nuclei. The bacterial cell wall is made up of peptidoglycan. And it is found in tissue of other organisms, soils, or water surfaces. It has specific structural characteristics including a cell envelope, ribosomes, nucleoid, pili, and flagella. It is also used to produce food, such as yoghurt. Bacteria is also used in the fields of biotechnology and gene therapy due to their possession of circular DNA called plasmids, in which it contain the genes that encode antibiotic resistance. The basic and metabolic highlights about some of these are obscure. Numerous microscopic organisms frame cooperative relationship with eukaryotes and are in this way of worry in medication and agriculture. Proteobacteria and cyanobacteria are the most essential phyla in worldwide biology and human issues. The cell divider in microbes fills in as a physical boundary between the cell and its environment. The inflexibility of the cell wall is because of Peptidoglycan is exceptional to the cell dividers of microorganisms, as eukaryotic cell dividers are for the most part made of chiten or cellulose,and archaea bacteria have cell walls composed of other polysaccharides and proteins. And the cell wall of bacteria contains 2 categorie; Gram-positive and Gram-negative, named after the gram strain test.

 

Bacterial genomics is a scientific discipline that concerns the genome, encompassing the entire hereditary information, of bacteria. Bacterial genomics can, for example, be used to study bacterial evolution or outbreaks of bacterial infections. All living organisms contain DNA. This amazing macromolecule encodes all of the information needed to program the cell's activities including reproduction, metabolism and other specialized functions. The human genome is comprised of 23 pairs of linear chromosomes, and approximately 3000 megabases (Mb) of DNA, while the genome of the bacterium Escherichia coli consists of a single 4.6 Mb circular chromosome. By studying the genomes of bacteria we are able to better understand their metabolic capabilities, their ability to cause disease and also their capacity to survive in extreme environments. Many of the well-studied bacterial model organisms, such as E. coli, have a single circular chromosome. However, advances in molecular genetics have shown that bacteria possess more complex arrangements of their genetic material than just a single circular chromosome per cell. Some bacterial genomes are comprised of multiple chromosomes and/or plasmids and many bacteria harbor multiple copies of their genome per cell. During the last decade, great advances have been made in the study of bacterial genomes which is perhaps better described by the term bacterial genomics. The application of powerful techniques, such as pulsed-field gel electrophoresis of macro-restriction fragments of genomic DNA, has freed the characterisation of the chromosomes of many bacteria from the constraints imposed by classical genetic analysis. It is now possible to analyse the genome of virtually every microorganism by direct molecular methods and to construct detailed physical and gene maps.

The Public Health and bacteriology concentration includes studies in bacterial pathogenesis, principles of public health, epidemiology, molecular genetics, and environmental and industrial bacterial processes. Bacteriology of Public Health deals with public health hygiene. Public health refers to the science of all organized measures protecting and improving health of communities and populations locally and globally and to promote health, prevent disease as a whole through healthy life styles, promotion of research for disease, detection and control of bacterial diseases. Public health bacteriology aims to interpret diagnostics at the population level, rather than at the level of the individual patient. Outbreaks of infectious diseases such as Zika and Ebola, alongside increased concerns regarding antibiotic resistance, highlight the need for professionals who fully understand the role of microorganisms in public health in order to respond to such threats. It focuses on the science of bacteria, microorganisms and the range of strategies employed for public health protection, including epidemiology, public health intelligence, vaccination, antimicrobial chemotherapy, diagnostic microbiology and outbreak investigation.

Medical Bacteriology and Immunology covers all aspects of the interrelationship between bacterial agents and their hosts. Immunology studies the functions, mechanisms and significance of human defence systems in various disease conditions. Every day of our lives, we are exposed to microbes such as bacteria, viruses, and parasites. The single system in the body that allows life to continue in the face of these assaults is the immune system. The immune system is the network of cells and their biological processes that enable the body to recognize diseased cells or the invasion by microorganisms (bacteria, viruses, parasites, and prions) and eliminate them. Collectively, these two disciplines address how humans and other mammals respond to bacterial disease.

Vaccine development is a priority for global health due to the growing multidrug resistance in bacteria. Bacterial vaccines contain killed or attenuated bacteria that activate the immune system. Antibodies are built against that particular bacteria, and prevents bacterial infection later. An example of a bacterial vaccine is the Tuberculosis vaccine. Bacterial Vaccines provides information dealing with vaccination of man against bacterial diseases. A saline solution suspension of a strain of attenuated or killed bacteria prepared for injection into a patient to stimulate development of active immunity to that strain and against similar bacteria.